

Sensibly Storing Sensitive Stuff

Gustavo Durand, Technical Lead / Architect, IQSS. <u>gdurand@iq.harvard.edu</u> Michael Bar-Sinai, PhD Candidate, Ben Gurion University Fellow, IQSS. @michbarsinai m@mbarsinai.com Tania Schlatter, UX & UI lead, IQSS

Overview

- An open-source platform to publish, cite, and archive research data
- Built to support multiple types of data, users, and workflows
- Developed at Harvard's Institute for Quantitative Social Science (IQSS) since 2006
- Development funded by IQSS and with grants, in collaboration with institutions around the world
- 15 on the core team developers, UX & UI designers and researchers, metadata specialists, curation manager

Dataverse Features - Data

- Persistent IDs / URLs
 - DataCite
 - \circ Handle
- Automatically Generated Citations with attribution
- Compliant with FAIR and data citation principles
- Domain-specific Metadata
- Versioning
- File Storage
 - Local
 - Swift (OpenStack)
 - S3 (Amazon)

Dataverse Features - Users

- Multiple Sign In options
 - Native
 - Shibboleth
 - OAuth (ORCID)
- Dataverses within Dataverses
- Branding
- Widgets

Dataverse Features - Workflows

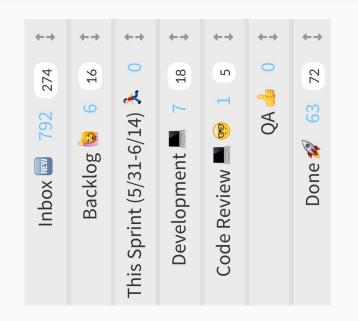
- Permissions
- Access Controls and Terms of Use
- Publishing Workflows
- Private URLs
- Upload / Download Workflows
 - Browser
 - Dropbox
 - Rsync (for big data "packages")

Dataverse Features - Interoperability

- APIs
 - SWORD
 - Native
- Harvesting (OAI-PMH)
 - Client
 - Server
- Modular External Tools
 - Explore
 - Configure

Glassfish Server 4.1

Java SE8


Java EE7

- Presentation: JSF (PrimeFaces), RESTful API
- Business: EJB, Transactions, Asynchronous, Timers
- Storage: JPA (Entities), Bean Validation

Storage: Postgres, Solr, File System / Swift / S3

Dataverse Development Process

- Inbox
- Backlog
- This Sprint
- Development
- Code Review
- QA
- Done

https://waffle.io/IQSS/dataverse

- SBGrid Data
 - Large Data and Support
- Massachusetts Open Cloud
 - Big Data Storage and Compute Access (OpenStack)
- DANS/CIMMYT
 - Handles Support
- ResearchSpace
 - API Java Client Library
- Provenance
 - W3C PROV

Dataverse Community

• 34 installations around the world


Dataverse Community

- 75+ code contributors outside of the Core Team
- Hundreds of members of the Dataverse Community developers, researchers, librarians, data scientists
 - Dataverse Google Group
 - Dataverse Community Calls
 - Dataverse Community Meeting
- Global Dataverse Community Consortium

Sensitive Data

Broadly speaking:

Data is sensitive if it can cause harm

Can't we Simply Anonymize Data?

No.

87 percent of all Americans could be <u>uniquely</u> <u>identified using only three bits of information</u>: ZIP code, birthdate, and sex [Sweeney, 2000]

De-anonymization of anonymized Netflix data [Narayanan, Shmatikov, 2008]

We used 15 months of data from 1.5 million people to show that 4 points--approximate places and times--are enough to identify 95% of individuals in a mobility database.

> [de Montjoye, Hidalgo, Blondel, Verleysen, 2013]

Can't we Simply Anonymize Data?

No.

- Linkage attacks (Sex, DoB, Zip-code) enough for identification [Sweeny 00]
- AOL Debacle [2006]
- Netflix award [Narayanan, Shmatikov 08] Anonymized bi-partite graph of users and movies
- Social networks [Backstrom, Dwork, Kleinberg 07]
- Genetic data (GWAS) [Homer, Szelinger, Redman, Duggan, Tembe, Muehling, Pearson, Stephan, Nelson, Craig 08]
- Microtargeted advertising Facebook advertising mechanism, aimed at providing privacy, actually violates privacy [Korolova 11]
- Recommendation Systems [Calandrino, Kiltzer, Naryanan, Felten, Shmatikov 11]
- Israeli CBS [Mukatren, Nissim, Salman, Tromer]
- New York Taxicabs [NeustarResearch 14]
- Multiple innocuous queries (queries are random) [Dinur, Nissim 03], [Dwork, McSherry, Talwar 07]
- Unique in the Shopping Mall: Reidentifying credit card data [de Montejoye, Pentland, Radaelli, Singh, 2015]

In summing up,

It's complicated

Application Developers Have to Face These Challenges **Growing Regulations:** HIPAA, CalOPPA, GDPR...

Growing User Concern: E.g. Facebook & Cambridge Analytica

Harvard's Five Security Levels

Level 1 Public Information

Assigned by IRB/Researcher

Level 2

Information the University has chosen to keep confidential but the disclosure of which would not cause material harm

Level 3

Information that could cause risk of material harm to individuals or the University if disclosed

Level 4

information would likely cause serious harm to individuals or the University if disclosed

Level 5

Information that would cause severe harm to individuals or the University if disclosed

Source: https://policy.security.harvard.edu/view-data-security-level

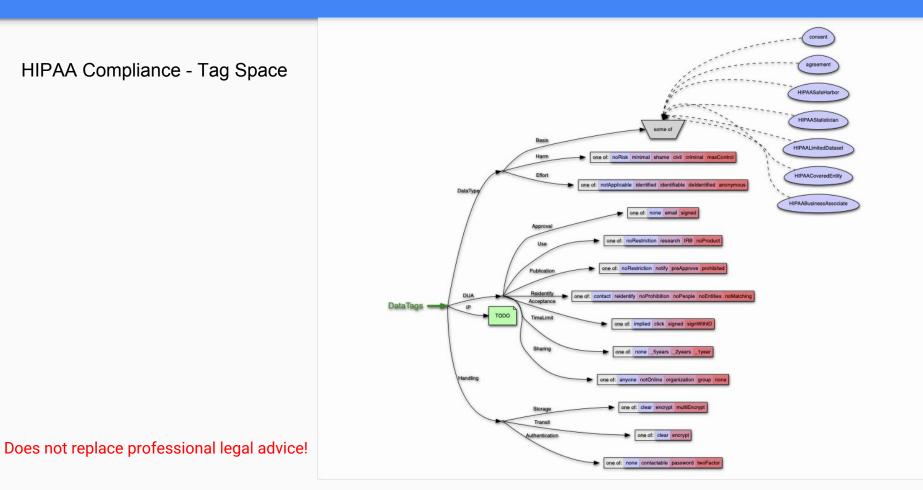
DataTags Levels

Тад Туре	Description	Security Features	Access Credentials
Blue	Public	Clear storage, Clear transmit	Open
Green	Controlled public	Clear storage, Clear transmit	Email- or OAuth Verified Registration
Yellow	Accountable	Clear storage, Encrypted transmit	Password, Registered, Approval, Click-through DUA
Orange	More accountable	Encrypted storage, Encrypted transmit	Password, Registered, Approval, Signed DUA
Red	Fully accountable	Encrypted storage, Encrypted transmit	Two-factor authentication, Approval, Signed DUA
Crimson	Maximally restricted	Multi-encrypted storage, Encrypted transmit	Two-factor authentication, Approval, Signed DUA

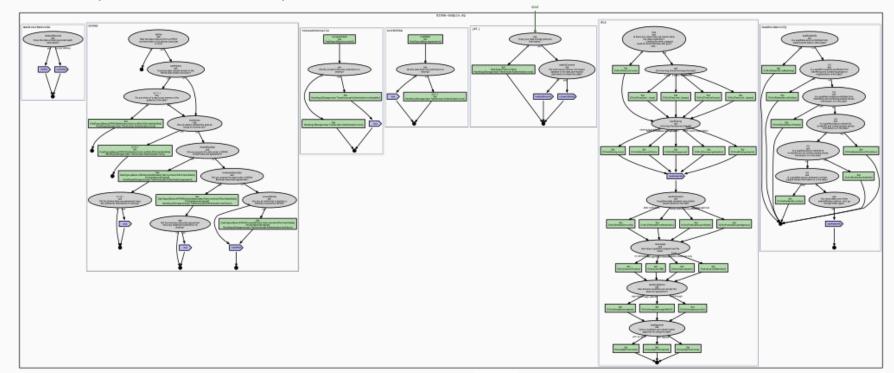
Source: Sweeney L, Crosas M, Bar-Sinai M. Sharing Sensitive Data with Confidence: The Datatags System. *Technology Science*. 2015101601. October 16, 2015. https://techscience.org/a/2015101601

US-CERT Traffic Light Protocol

Color	When should it be used?	How may it be shared?
Not for disclosure, restricted to participants only.	Sources may use TLP:RED when information cannot be effectively acted upon by additional parties, and could lead to impacts on a party's privacy, reputation, or operations if misused.	Recipients may not share TLP:RED information with any parties outside of the specific exchange, meeting, or conversation in which it was originally disclosed. In the context of a meeting, for example, TLP:RED information is limited to those present at the meeting. In most circumstances, TLP:RED should be exchanged verbally or in person.
Limited disclosure, restricted to participants' organizations.	Sources may use TLP:AMBER when information requires support to be effectively acted upon, yet carries risks to privacy, reputation, or operations if shared outside of the organizations involved.	Recipients may only share TLP:AMBER information with members of their own organization, and with clients or customers who need to know the information to protect themselves or prevent further harm. Sources are at liberty to specify additional intended limits of the sharing: these must be adhered to.
TLP:GREENCorrestingLimited disclosure, restricted to the community.Sources may use TLP:GREEN w information is useful for the awarene participating organizations as well a peers within the broader community.		Recipients may share TLP:GREEN information with peers and partner organizations within their sector or community, but not via publicly accessible channels. Information in this category can be circulated widely within a particular community. TLP:GREEN information may not be released outside of the community.
TLP:WHITE Disclosure is not limited.	Sources may use TLP:WHITE when information carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release.	Subject to standard copyright rules, TLP:WHITE information may be distributed without restriction.


Assigning a Tag Semi-automatically

DataTags	www.datatags.org/interviews/questionnaireld/accept	× 1			
	DataTags Feedback	4 5			
Question: Please	Data Tays Product	n U			
Do the data cor	Dataset Can be Accepted				
Terms	Your dataset is tagged as orange				
Business associat A business associa	May include sensitive, identifiable personal information, shared with verified and/or approved recip	pients under agreement.			
involving the use or	DeteTage				
processing, data ar activities.	DataTags				
Covered entity	Legal				
A covered entity is	MedicalRecords				
	HIPAA safeHarborDeidentified				
Yes Not Sure					
	EducationRecords				
Answer Feed	PPRA protectedDeidentified Consent				
Do the data contai	ContractOrPolicy no				
substance abuse c treatment?	GovernmentRecords				


Assigning a Tag Semi-automatically

PolicyModels

PolicyModels

HIPAA Compliance - Decision Graph

What We Are Doing

Goal for Next Year

Tag Type	Description	Security Features	Access Credentials	
Blue	Public	Clear storage, Clear transmit	Open	
Green	Controlled public	Clear storage, Clear transmit	Email- or OAuth Verified Registration	
Yellow	Accountable	Clear storage, Encrypted transmit	Password, Registered, Approval, Click-through DUA	
Orange	More accountable	Encrypted storage, Encrypted transmit	Password, Registered, Approval, Signed DUA	
Red	Fully accountable	Encrypted storage, Encrypted transmit	Two-factor authentication, Approval, Signed DUA	
Crimson	Maximally restricted	Multi-encrypted storage, Encrypted transmit	Two-factor authentication, Approval, Signed DUA	

- Encrypted Transit
 - Inter-server communication must be "protected"
- Encrypted Storage (<u>#4113</u>, <u>#4379</u>)
- Require verification of e-mail address (<u>#3300</u>)
- Complex Passwords
 - :PVMinLength, :PVMaxLength
 - :PVCharacterRules, :PVNumberOfCharacteristics

*non-exhaustive list

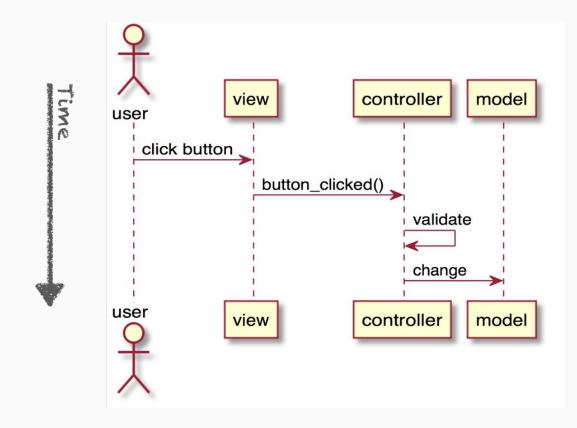
- :PVDictionaries
- :PVGoodStrength
- Mitigate against password guessing
- Bulk Removal of Roles / Permissions

Dev<->Ops<->Management

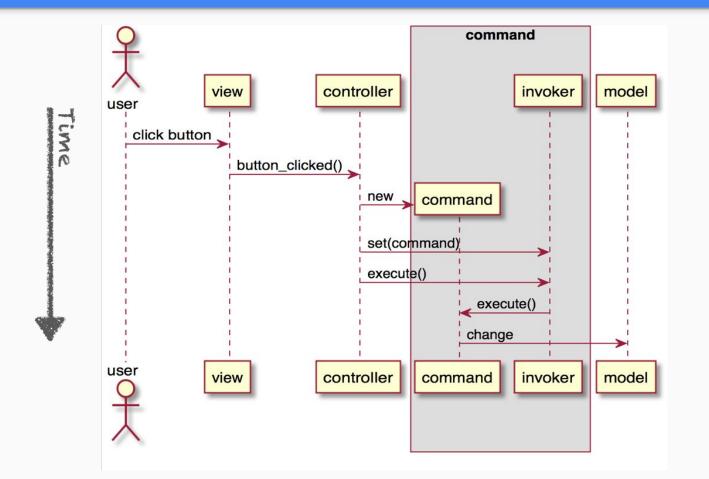
- Server operators need to know who is in charge of the application
- Must prove "business need" to access server/application
- Software must be patched and updated regularly
- Server must run updated maleware-detection software
- Periodical scans
 - "high risk confidential information" accessed for authorized purposes
 - Activity logs
- Training and screening of system administer ors
- Protection for server and backups. Driete data prior to disposing devices.
- Logging of user and administrative access
- Any actual or suspected loss, theft, or improper use of or access to confidential information must be reported promptly.

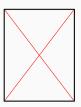
Confidential information must only be accessed for authorized purposes

*non-exhaustive list


Engineering

- Administrators should not be able to retrieve user passwords
- Force re-identification after idle period
- Is it OK to have a super-user in your application?
- Allow API keys in HTTP headers, not just as query parameters
- Multi Party encryption
- Multiple Storage Back-Ends


Bake security into application architecture from the start Use common-sense and healthy paranoia (so your users won't have to) **Problem** Permission checks are spread throughout the applications; Miss a single permission check - and you may have a severe security vulnerability


Design Pattern Use the command pattern instead of direct manipulation; Add permission metadata to command objects, and have a central point that validates permissions prior to executing commands

Command Pattern - Recap

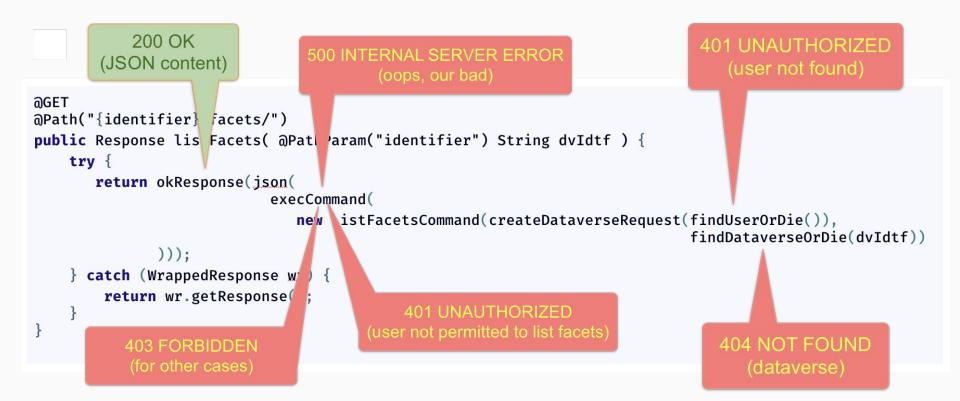
Command Pattern - Recap

public interface Command<R> {

```
R execute( CommandContext ctxt ) throws CommandException;
Map<String,DvObject> getAffectedDvObjects();
Map<String,Set<Permission>>> getRequiredPermissions();
DataverseRequest getRequest();
```

- execute() is where the work is done.
 - Server resources and injected objects are made available via CommandContext
- getAffectedDvObjects() and getRequiredPermissions() detail which objects are affected and what permissions are needed to affect them
- getRequest() allows the permission system to detect which permissions the user has.

@RequiredPermissions(Permission.ManageDataversePermissions)
public class DeleteRoleCommand extends AbstractVoidCommand {


```
private final DataverseRole doomed;
```

```
public DeleteRoleCommand(DataverseRequest aRequest, DataverseRole doomed ) {
    super(aRequest, doomed.getOwner());
    this.doomed = doomed;
}
```

```
@Override
```

```
protected void executeImpl(CommandContext ctxt) throws CommandException {
    for (RoleAssignment ra:ctxt.roles().roleAssignments(doomed.getId())) {
        ctxt.roles().revoke(ra);
    }
    ctxt.roles().delete(doomed.getId());
```

Command Pattern Extra Points: Abstraction of Model Actions

More on this Design Pattern

- JavaOne 2014: BOF5619 Lean Beans (are made of this): Command pattern vs. MVC [Durbin, Bar-Sinai]
- JavaOne 2016: BOF4161 REST in Peace with Java EE

[Durand, Bar-Sinai]

• Securing Dataverse with an Adapted Command Design Pattern

[Durand, Bar-Sinai, Crosas, Proceedings of 2017 IEEE Cybersecurity Development]

$Pr[T(M(X)) = 1] \le e^{\epsilon} Pr[T(M(X')) = 1] + \delta, \qquad \forall T.$

Differential Privacy is a formal, mathematical conception of privacy preservation. It **guarantees** that any reported result does not reveal information about any one single individual, regardless of auxiliary information.

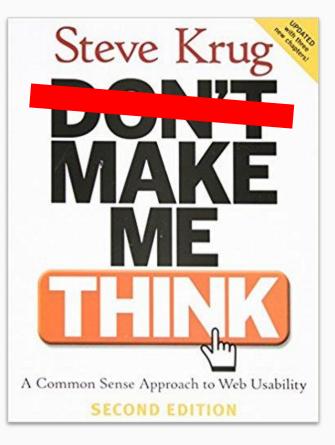
https://privacytools.seas.harvard.edu/differential-privacy

https://privacytools.seas.harvard.edu/psi

External Tools: PSI Budgeteer

The budgeteer allows users to select which statistics they would like to calculate and are given estimates of how accurately each statistic can be computed. They can also redistribute their privacy budget according to which statistics they think are most valuable in their dataset.

Variable Name Hold V Statistic Error ค age Search variable names Mean 0.9586 ade Variable Type: Numerical A puma Show Epsilon Confidence Level Mean sex Histogram (a) 0.05 😧 age Quantile Reserve budget for future users educ The selected statistic(s) require the metadata fields below. Fill these in with reasonable estimates that a knowledgeable person could make without having looked at the raw data. Do not use values directly from income your raw data as this may leak private information. Click here for more information. latino 18 Lower Bound: black Upper Bound: 50 asian Delete variable married


Census_PUMS5_California_Subsample

Privacy Loss Parameters Edit Parameters 3 Epsilon (ε): 0.1000

1×10⁻⁶ Delta (δ):

Ø

UX & UI Implications

- Requiring users to "stop and think" without scaring them
 - Complicates application flow
- How to raise these important issues so that users are prepared and not surprised by additional requirements?
- New functionality/UI pattern(s)
 - For Dataverse, we created an explicit step by step guide in the UI when depositing data
- Might not play nicely with existing UI
 - Color-based systems mess up your existing UI
 - Term collision: e.g. "Tagging" is already over used

Legal Implications

Does not replace professional legal advice!

- Have a professional legal team look at your system and the data it gathers, stores, shares, and processes
- Implications depend on country, state
- User agreements
- Terms of use
- Explicit acceptance of "warrant"

Restrictions section of the Harvard Dataverse current EULA

Restrictions

In contributing Content to the site, you must ensure that the Content complies with the Terms of Use. you make the following representations and warranties to Harvard Dataverse:

- ...
- User Uploads must be void of all identifiable information, such that re-identification of any subjects ... should not be possible. Specifically, User Uploads cannot contain social security numbers; credit card numbers; medical record numbers; health plan numbers; other account numbers of individuals; or biometric identifiers.... The only exceptions for when identifiable information is allowed are when:
 - the information has been previously released to the public;
 - the information describes public figures, where the data relates to their public roles or other non-sensitive subjects ;

0

...

Information in this slide does not replace professional legal advice!

Lessons Learned

- Understand risks, legal background, and technologies that apply to your application's data. These also affect what you can do with the data once gathered
- Expect a considerable effect on application UI/UX
- No more "roll your own" permission enforcement, this has to be done in a single place using a well-tested algorithm
- Design UX, UI, and application so that not all installations/accounts have to support the most sensitive data (and, thus, do not need to suffer the UX/performance impact)
- Use what you need, not what's available
 - Do you absolutely *have* to comply with FIPS 140-2 Level 3?

Thanks!

Questions?

The Institute for Quantitative Social Science

Michael's travel funded in part by The Frankel Fund for BGU students